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ABSTRACT

Let G = (V, E) be a simple and undirected graph. A proper colouring of the vertices of V (G) is an assignment of coloursto
the vertices of G such that adjacent vertices receive di f&rent colours. A proper colouring of G induces a partition of V (G)
into independent sets. The minimum cardinality of a proper colour partition of G is called the chromatic number of G and
is denoted by x(G). If in a proper colour partition of G, the union of any two-colour classes induces an acyclic subgraph,
then the colouring is called acyclic colouring of G. {[4], [5], [6]}. If instead, the union of any two colour classes in a
proper colour partition induces a digoint collection of stars, the resulting proper colour partition is called a star partition.
{[6]}. A subset S of V(G) is called an equivalence set if the subgraph induced by S is component wise complete. In this
paper, a study of proper colour partition in which the union of any two colour classes induces an equivalence set is
initiated.
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INTRODUCTION

In what follows, a graph G means a finite, simple and undirected graph. The chromatic humber of G is the minimum
cardinality of a partition of V (G) into independent sets. If the subgraph induced by a set of vertices of G is component wise
complete, then that set is called an equivalence set. In aproper colour partition, the subgraph induced by the union of any two-
colour classes is an equivalence set, then that colouring is called an equivalence colouring of the graph. In any graph, the
partition of V (G) into subsets each of which isasingleton is obviously an equiva ence colouring. The minimum cardinality of

an equivaence colour partition of G is called the equivalence chromatic number of G and is denoted by yx.,(G).
A study of this colouring is made in this paper.

Definition 1.1. A proper colouring is an equivalence colouring if the union of any twocolour classes induce an
equivalence set. The minimum cardinality of such a colouring is called equivalence chromatic number of a graph and is
denoted by x,,(G)

Example 1.1. Consider P, with vertices {vy,v,,v3,v4, Vs, V6. ¥(Ps) = 2 and the two colour classes are
{vy,v3, 05} and {vy, v,, vg}. The union of these twocolourciasses induce P, which is not an equivalence set. But {v,, v,},

{v2. vs}.{V3. Vs } iS@)eq— partition of Pg.
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Remark 1.2. X(G) < x¢4(G), When (G) = K,,, (G) = xeq(G).
Remark 1.3. This study is similar to acyclic and star colouring of graphs[8th Cologne-

Twente Workshop on Graphs and Combinatorial Optimization CTWQ09, Ecole Poly technique and CNAM,

Paris,

France, June 2 — 4, 2009, A. Lyons, Acyclic and star colouring of Joins of graphs and algorithm K for cographs,
199 - 204.}

In a minimum equivalence color partition, the sub graph induced by the union of any two colour classesis of form

tK, UsK;, t, s= 0. In a minimum equivalence color partition, there may exist two independent colour classes without any
edges between them. In such a case, there will be an induced P; in the graph. For example, let G be the graph obtained

from C, by attaching paths of length 2 one each at the diametrically opposite vertices of C,.

Let VV (Cy) = {uy, Uy, ug, uy ). Let {2y, us, ug b and {u,, u,, ug} be the path of length of 2 attached at u, and u,
respectively. {{u;, ug, ug}, {1, Uy}, {tta, Us}, {Us}};

{{ug,ug}, {uz,us}, {us, ug}, {us, us}} are two minimum equivalence colour partition. In the first one, there
is no edge between {u,,us, ug}, and{us}.In the second one, there is no edge between {u,,us} and {u;, ug}. In this
graph, < {uy,u,, us,u,} > isan inducedP;. The join of {u;,ug ug} and {u,} s independent but u, is adjacent with
both u, and u; of the join and hence the number of classes cannot be reduced. Similarly, in the join of {u;,us} and
{us,ug} which is independent, but u,is adjacent with both 1, and u; of the join and hence the number of" classes

cannot be reduced.

Theorem 1.4. If agraph G isinduced P; — free, then in a minimum equivalence colour partition, (i) There exists
an edge between any twocolour classes. (ii) Every colour class contains a colourful vertex, that is, a vertex which is
adjacent with every other colour class. (iii) After suitable modification of the minimum equivalence colour partition, there

exists a colour class which is an equivalence dominating set of the graph.
Pr oof

i Suppose 1 = {V;, V,...., Vi.} be a minimum equivalence colour partition in an inducedP;-free graph G. Suppose
there exists no edge between V; andVj, {1<,j <k, i j}. Consder m; =m U V; UV; — {V; - V;}. As G isinduced
P;- free, there does not exist avertex uinany V. {L<r <K, r =i, j} such that u is adjacent with some vertex of V;
and some vertex V;. Therefore,nr; is an equivalence colour partition with cardinality less than that of the minimum

equivalence colour partition 1, a contradiction.

ii.  Arguing as in (i), we get that every colour class contains a colourful vertex (since as G is induced P;- free, any

vertex uin V; which is not adjacent to V; can be included in V; without aecting equivalence nature of ).

iii.  Arguing as in (i), any vertex not in V; which is not adjacent with V; can be moved to V; rasulting in V;, an

equivalence dominating set of the graph.
Remark 1.5. (i)leads to achromatic equivalence colour partition in an induced P; graph.

(i)leads to b-equivalence colouring partition in an induced P5 graph.
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Also, Greedy equivalence colouring partition in an induced P; graph can be defined.

Xeq(G) for some Well-known Graphs

Observation 1.6.
Xeq(Kn)=n.
Xeq(K‘l,n) =n+1.
Xeq(Kmn) =m+n.

KXeq (Wn):: nforall n> 4.

(2ifn =2
3ifn = 0(mod3)
(Vi) yeq(Cy) =4 4ifn = 1(mod3))
Sifn = 2 (mod3)

Xeq(G ° K1) = xeq(G)+ 1. Inparticular, y.q(G o K;) =m+ 1.

Definition 1.7. An independent subset S of V (G) is an equivalence independent set of G if [IN(v) n S| < 1 for
every (v) in (V = S). That is, any equivalence independent subset of V (G) is a nearly perfect set of (G). An equivalence
independent subset of G is an independent semi-strong subset of (G). The maximum cardinality of an equivalence
independent set is called the equivaence independence number of (G) and is denoted by f,,(G) (or also by iss(G)). A
maximal equivalence independent set of G need not be a dominating set of G.

Example 1.2. In C,, any single vertex constitutes a maximum equivalence independent set of C,. It is obviously
not dominating and the diametrically opposite vertex is independent of the singleton equivalence independent set and its

inclusion will result in a vertex in the complement having two neighbours in the two-element independent set.

Remark 1.8. By recalling the definition of perfect dominating set : A dominating subset D of nearly perfect if for
anyvinV - D, [N(v)nD| <1, asubset D isstrongly stableif forany vinV (G), [N(v) n D| < 1. [Page 115, 116 of Chapter

4.2 of Fundamentals of domination in graphs] The vaues of f,,(G) are found for some known classes of graphs which are
similar to the values of iss(G) [7].

Beq(G) For some Known Classes of Graphs
(1) Beg(Kn)=1.
(2Beq(Kinn) = 1.
(3)Beq(Kin) = 1.

ag (P'J“F ~1ifn = 2(mod 4),n # 6
eq\fn) ™

E] otherwise

(5) Beq(Wyp) =1foraln=4.
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(6) Beg(Ca) = |3
(7) Beq(P) = 1, where P is the Petersen Graph.
8) Beg(Km(ay, az,...... ay)) = m
(9) Beq(Kayap....am)= 1, ifN23.
(10) Beq (il o Ky) = n. Inparticular Beq (K, © Ky) = m.
(11) Beg(n) =n.
Main Results

Theorem 1.9: In any graph G, (n/Beg(6)) < Xeg(G) < (n — xeq(G) + 1) Proof. Let M =
{Va, Vo, Vi Vidbe a x.q- partition of G where k = y.4(G). Then |V;| < B.,(G) for every i, (1 < I < K). Therefore,
n =3IVl £ kB (6).

Hence(n/ Beq(G)) < kK = Xeq(G). Consider the partition 1, = {V;,V;,V3,..... V;} where V; is af,,- set of G
and the remaining are singletons from V — V;.[]; is an equivalence colouring and hence x.q(G) =< r = (n — x.4(G) +
1).

Remark 1.10. ye, (G)=nif and only ifB.,(G) = 1.

Theorem 1.11. B.4(G) = 1if and only if G = K, or for any independent set S of G with cardinality = 2, there

existsavertex inV — S which is adjacent with at least two vertices of S.

Proof. If G = K,, or for any independent set S of G with cardinality = 2, there exists a vertex in V —S which is
adjacent with at least two vertices of S, then f,,(G) = 1. Conversely, suppose

Peq(G) = 1. If G # K, then, G has an independent set say S of cardinality > 2. If any vertex of V - S is adjacent
with at most one vertex of S, then S is equivalence independent set and hencef,,(G) > |S| = 2, a contradiction. Hence

the theorem.
Remark 1.12. feq (G) < fo(G). InKyy, Beq(G) Fo(G). INCy, Beq(G) =1 < Bo(G) = 2.

Theorem 1.13. B,,(G) = 2if and only if there exist two independent vertices u and v such that any vertex w in

V - S is adjacent with at most one of (u, v) and for any two independent vertices of V - S |, either one of (X, y) is
adjacent with one of u, v say u and at least one vertex of (V — S) — (X, y) is adjacent with at least two of v, x and y (or )u, x

andy.

Proof. Let f.,(G) = 2. Then there exists an independent subset S = u, v such that any vertex win V — S is

adjacent with et most cne of (u, v).consider 'V - S>. If V =S is empty, then

G=(Ky).If|V — S| =1,then G=(K;) or (K,UK;).
Suppose [V — S| = 2. Let(V -S)=(x,y).

Case 1: x and y are adjacent.
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Subcase 1: u, v are independent of x, y. Then ., (G) > 2, a contradiction.
In other cases, we get either P; with anisolated vertex or a C; with an isolated vertex or a F,.
Inall these cases f,,(G) = 2

Case 2: x and y are independent.

In this case, either G is 2K, or a P; with an isolated vertex. Inthis case ., (G) = 2.

Suppose |V - S| = 3.

Subcase 1. Suppose  V -S iscomplete. Then f,,(G) = 2 except when u and v are isolates.
Subcase 2: Suppose V- S isnot complete. The following 13 graphs satisfy f.4(G) = 2.

T AN
/| .i/

Figurel

Let |V - S| =4. Suppose V -S iscomplete. Then no vertex of (V - S) is adjacent with both u and v. Also, u
and v cannot be both independent of (V - S).

Suppose V - S isnot complete. Then there exist x and y in (V — S) which are independent verticesin V -
S .If uisadjacent with x then at least one vertex of (V — S) — (x, y) is adjacent with at least two of v, x and y. If both u
and v are not adjacent with any of x, y, then at least one vertex of (V - S) — (X, y) is adjacent with atleast two of v, xand y

oru,x andy.

Thus, for any two independent verticesof ~\/ - S , either one of (x, y) is adjacent with one of u, v say u and at

least ore vertex of (V — S) - (X, y) is adjacent with at least two of v, x and y or u, x and y. The converseis obvious.

Example 1.3. Let G be obtained from K, by adding two pendent vertices one each at two of the vertices of K,.
Then f.,(G) = 2.

Example 1.4. Let Vg, . = (u, vy, V3, v3). _et G beahtained from K; 3by adding two pendent vertices x, y one each

at v; and v,. Then f,,(G) = 2.
Theorem 1.14. 8,,(6) = nifand only if G = (K;,).

Proof. Suppose, By (G) = n. As B.,(G) < By(G), we get that B,(G) = n.Therefore, G = (jil;,) The converse is

obvious.

Theorem 1.15. ,,(G) =n—1ifand only if G has exactly one edge.
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Proof. Suppose fe,(G) =1~ 1. Then, asBe, (G ) < Bo(G), we get that B, (G) =n—1or n.
Iffo(G) = n, then G = (iuy,) and hencef,,(G) = n, a contradiction. Therefore,

B,(G) =n—1. That is, G has exactly one edge. The converse is obvious.

The following two theorems are easy to prove.

Theorem 1.16. Let G; amd G, be two vertex digoint graphs. Then

Xeq(G1 U G3) = max (Xeq(G1), Xeq(G2))-

Theorem 1.17. Let G, amd G, be two vertex digoint graphs. Then

Xeq(G1 + G2) = |V(Gy)| + V(G

Topic for further study

Maximum cardinality of equivalence colour partition in which there exists an edge between any two colour

classesin P; —free graph.

Grundy equivalence colour partition.

REFERENCES

F. Harary, Graph Theory, Addison-Wesley Reading, MA (1969).

T. W. Haynes, S T. Hedetniemi and P. J. Sater, Fundamentals of Domination in Graphs, Marcel Dekkerlnc.,
1998.

T. W. Haynes, S. T. Hedetniemi and P. J. Sater, Domination in Graphs: Advanced topics, Marcel Dekkerlnc.,
1998.

Noge Alon, Colin McDiarmid, Bruce Reed Acyclic colouring of graph, Random Sructures and Algorithms,Vol.2,
issue 3,1991, 277 — 288.

Bharat Joshi, Acyclic Coloring of Graphs, Thesis submitted in Theory and Algorithmic Research International
Ingtitute of Information Technology Hyderabad, INDIA February, 2010

A.Lyons, Acyclic and Sar Colorings of Joins of Graphs and an Algorithm for Cographs, 8th Cologne-
TwenteWorkshop on Graphs and Combinatorial Optimizaion, CTW 09, 2009, 199-204.

V.Praba, A study of diferent types of vertex partition in a graph, Ph.D. Thess, Si
ChandrasekarendraSaraswathi Viswa Mahavidhyalaya, 2018

Impact Factor (JCC): 6.2284 NAAS Rating 3.45



